These blog posts will build up into a complete description of a 2D marine processing sequence. They are based on our tutorial datasets, which in turn came from the New Zealand Government’s Ministry of Economic Development under the “Open File” System.
As a recap, so far I have discussed:
-
marine source signatures, minimum phase
conversion and resampling
-
assigning the 2D geometry, and some initial QC
checks of the data
The next thing we need to look at is the seismic trace
amplitudes.
The strength of the seismic reflections we see decreases
with the depth of the reflecting surface. There are several reasons for this but the main ones are
that:
- as the wavefield spreads it loses energy; this is known as spherical divergence. The same amount of energy is spread out over a larger surface - like blowing up a balloon
- as the energy travels, some of it is reflected at each interface and only a proportion continues; depending on the angle of incidence, some of this energy is converted to S-waves, refractions, and so on
- as the energy travels it is scattered; the Earth is not homogenous and when seismic waves encounter variations, wave fronts are distorted and energy is deflected in all possible directions – seismic scattering
Typically there are two different corrections needed to
account for this; a spherical divergence correction and a gain function. These vary with geology, and so for any given
dataset they are something we need to test and confirm before applying.
If you
are new to processing it is worth a quick recap of testing approaches before you carry on.
There are usually many options for the spherical divergence
correction; terms related to powers of the seismic velocity (V),
offset (X) and time (T). This is a large parameter space to search from the
outset.
Linear gain testing is usually based on a series of decibel per second functions (as
opposed to amplitude scalars) which offers a simple way to express an
exponential gain function.
A typical test “suite” would be to test a few of different
spherical divergence corrections such as T2, T2V and
perhaps T2V2, as well as linear gains of 1dB/second,
1.5dB/second and 2dB/second, and then review the results and adjust them if
needed.
Here’s the output of a test sequence for different Spherical
Divergence corrections. Corresponding amplitude decay curves are also shown. I’ve
put a full trace balance onto each display so we can clearly see the relative
amplitudes panel-to-panel.
In this case, the middle panel with the T2 function looks to be better scaled than the T2V function; this is more obvious on the amplitude decay power spectra and curves.
In practice you should apply these tests to a selection of shots from the whole line, ideally looking at different geological settings.
It’s a good idea to generate a stack with your chosen amplitude
recovery applied as well.
Brute stack with no true amplitude recovery (top); T2 spherical divergence correction applied (bottom). Both sections have only had a balance applied, to enable comparison. |
The stack shows that perhaps we could apply an additional
linear gain, but as the shots are reasonably well balanced we can make that
choice later if needed.
The other aspect of amplitude to consider is the presence of
unusually high amplitude noise bursts.
There are a variety of possible causes, from sharks biting the cable
though to digital spikes caused by loose connections in the cable (on older
surveys). If we leave these in place they can cause significant problems, as
can be seen in the example in the blog entry on Automatic Gain Control
One way to check for these “spike” problems is to look at
the peak amplitude on every trace. This
analysis needs to be in a window that is under the direct and refracted
arrivals, as these are high amplitude. Some
software allows you to plot this as a graph over the data, but the best
approach is to display it as a graphical colour coded display, with channel on
one axis and the shotpoint number on the other.
The amplitude display plots are a useful way to look at the
data, especially if there are a lot of spiking traces. Swell-noise bursts will
tend to dip from upper-left to lower-right, as the cable is pulled through the
area where the wave is breaking. Vertical lines are bad channels – you can see
some unusually faint channels on this display.
Bad shots show up as horizontal bars – these can be caused
by corrupted files or “misfires” where one or more airguns fire out of
sequence. On older systems electrical
interference or short-circuits can corrupt the whole record.
Bad channels and bad shots are the key things to edit out;
things like swell noise bursts can be addressed in other ways.
No comments:
Post a Comment